Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley.

نویسندگان

  • B Blume
  • T Nürnberger
  • N Nass
  • D Scheel
چکیده

Transient influx of Ca(2+) constitutes an early element of signaling cascades triggering pathogen defense responses in plant cells. Treatment with the Phytophthora sojae-derived oligopeptide elicitor, Pep-13, of parsley cells stably expressing apoaequorin revealed a rapid increase in cytoplasmic free calcium ([Ca(2+)](cyt)), which peaked at approximately 1 microM and subsequently declined to sustained values of 300 nM. Activation of this biphasic [Ca(2+)](cyt) signature was achieved by elicitor concentrations sufficient to stimulate Ca(2+) influx across the plasma membrane, oxidative burst, and phytoalexin production. Sustained concentrations of [Ca(2+)](cyt) but not the rapidly induced [Ca(2+)](cyt) transient peak are required for activation of defense-associated responses. Modulation by pharmacological effectors of Ca(2+) influx across the plasma membrane or of Ca(2+) release from internal stores suggests that the elicitor-induced sustained increase of [Ca(2+)](cyt) predominantly results from the influx of extracellular Ca(2+). Identical structural features of Pep-13 were found to be essential for receptor binding, increases in [Ca(2+)](cyt), and activation of defense-associated responses. Thus, a receptor-mediated increase in [Ca(2+)](cyt) is causally involved in signaling the activation of pathogen defense in parsley.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley.

Fungal elicitor stimulates a multicomponent defense response in cultured parsley cells (Petroselinum crispum). Early elements of this receptor-mediated response are ion fluxes across the plasma membrane and the production of reactive oxygen species (ROS), sequentially followed by defense gene activation and phytoalexin accumulation. Omission of Ca2+ from the culture medium or inhibition of elic...

متن کامل

Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells.

Cell suspensions obtained from Nicotiana plumbaginifolia plants stably expressing the apoaequorin gene were used to analyze changes in cytosolic free calcium concentrations ([Ca(2+)](cyt)) in response to elicitors of plant defenses, particularly cryptogein and oligogalacturonides. The calcium signatures differ in lag time, peak time, intensity, and duration. The intensities of both signatures d...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Vimentin, a Novel NF-κB Regulator, Is Required for Meningitic Escherichia coli K1-Induced Pathogen Invasion and PMN Transmigration across the Blood-Brain Barrier

BACKGROUND NF-κB activation, pathogen invasion, polymorphonuclear leukocytes (PMN) transmigration (PMNT) across the blood-brain barrier (BBB) are the pathogenic triad hallmark features of bacterial meningitis, but the mechanisms underlying these events remain largely unknown. Vimentin, which is a novel NF-κB regulator, is the primary receptor for the major Escherichia coli K1 virulence factor I...

متن کامل

A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity.

CERK1 is a lysine motif-containing plant pattern recognition receptor for chitin and peptidoglycan. Chitin recognition by OsCERK1 triggers rapid engagement of a rice MAP kinase cascade, which leads to defense response activation. How the MAP kinase cascades are engaged downstream of OsCERK1 remains obscure. Searching for host proteins that interact with Xoo1488, an effector of the rice pathogen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2000